
FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 1 
 

Introducción a Visual Basic 
 
Comentario General 
 
¿Qué es Visual Basic? La palabra “Visual” hace referencia al método que se utiliza para crear la 
interfaz gráfica de usuario (GUI). En lugar de escribir numerosas líneas de código para describir 
la apariencia y la ubicación de los elementos de la interfaz, simplemente puede arrastrar y 
colocar objetos prefabricados en su lugar dentro de la pantalla. Si ha utilizado alguna vez un 
programa de dibujo como Paint, ya tiene la mayor parte de las habilidades necesarias para crear 
una interfaz de usuario efectiva. 
La palabra “Basic” hace referencia al lenguaje BASIC (Beginners All-Purpose Symbolic 
Instruction Code), un lenguaje utilizado por más programadores que ningún otro lenguaje en la 
historia de la informática o computación. Visual Basic ha evolucionado a partir del lenguaje 
BASIC original y ahora contiene centenares de instrucciones, funciones y palabras clave, muchas 
de las cuales están directamente relacionadas con la interfaz gráfica de Windows. Los 
principiantes pueden crear aplicaciones útiles con sólo aprender unas pocas palabras clave, pero, 
al mismo tiempo, la eficacia del lenguaje permite a los profesionales acometer cualquier objetivo 
que pueda alcanzarse mediante cualquier otro lenguaje de programación de Windows. 
El lenguaje de programación Visual Basic no es exclusivo de Visual Basic. La Edición para 
aplicaciones del sistema de programación de Visual Basic, incluida en Microsoft Excel, Microsoft 
Access y muchas otras aplicaciones Windows, utilizan el mismo lenguaje. El sistema de 
programación de Visual Basic, Scripting Edition (VBScript) para programar en Internet es un 
subconjunto del lenguaje Visual Basic. La inversión realizada en el aprendizaje de Visual Basic le 
ayudará a abarcar estas otras áreas. 
Si su objetivo es crear un pequeño programa para su uso personal o para su grupo de trabajo, 
un sistema para una empresa o incluso aplicaciones distribuidas de alcance mundial a través de 
Internet, Visual Basic dispone de las herramientas que necesita. 

• Las características de acceso a datos le permiten crear bases de datos y aplicaciones cliente 
para los formatos de las bases de datos más conocidas, incluidos Microsoft SQL Server y 
otras bases de datos de ámbito empresarial. 

• Las tecnologías ActiveX™ le permiten utilizar la funcionalidad proporcionada por otras 
aplicaciones, como el procesador de textos Microsoft Word, la hoja de cálculo Microsoft Excel 
y otras aplicaciones Windows. Puede incluso automatizar las aplicaciones y los objetos 
creados con la Edición profesional o la Edición empresarial de Visual Basic.  

• Las capacidades de Internet facilitan el acceso a documentos y aplicaciones a través de 
Internet desde su propia aplicación. 

• La aplicación terminada es un auténtico archivo .exe que utiliza una biblioteca de vínculos 
dinámicos (DLL) de tiempo de ejecución que puede distribuir con toda libertad. 

 
Diferentes versiones 
 

Versión Sistema Operativo Compilación Acceso a base de 
datos Access (.mdb)  

Visual Basic 
3.0 Windows 3.x 16 bits Access 1.0 y 2.0 

Visual Basic 
4.0 

Windows 95 / 98 /  3. X / 
NT 4.0 

16 y 32 bits 
(compilación 
condicional) 

Access 95 

Visual Basic 
5.0 

Windows 95 / 98 / NT 4.0 32 bits Access 97 

Visual Basic 
6.0 

Windows 95 / 98 / Me / 
2000 / NT 4.0 

32 bits Access 97 y 2000 

 
Diferentes ediciones 
 
Visual Basic se encuentra disponible en tres versiones, cada una de las cuales está orientada 
a unos requisitos de programación específicos: 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 2 
 

• La Edición de aprendizaje de Visual Basic permite a los programadores crear robustas 
aplicaciones para Microsoft Windows y Windows NT®. Incluye todos los controles 
intrínsecos, además de los controles de cuadrícula, de fichas y los controles enlazados a 
datos. La documentación que se proporciona con esta edición incluye “Aprenda Visual 
Basic ya” junto con el de la  biblioteca de Microsoft Developer Network (MSDN), que 
contienen documentación completa en pantalla.  

• La Edición profesional proporciona a los profesionales un completo conjunto de 
herramientas para desarrollar soluciones para terceros. Incluye todas las características 
de la Edición de aprendizaje, así como controles ActiveX adicionales, el diseñador de 
aplicaciones para Internet Information Server y Visual Database Tools and Data. La 
documentación que se proporciona con la Edición profesional incluye el libro 
Características empresariales de Visual Studio más los CD de Microsoft Developer  
Network que contienen documentación completa en pantalla. 

• La Edición empresarial permite a los profesionales crear sólidas aplicaciones distribuidas 
en un entorno de equipo. Incluye todas las características de la Edición profesional, así 
como herramientas de Back Office como SQL Server, Microsoft Transaction Server, 
Internet Information Server, Visual SourceSafe, SNA Server, etc. La documentación 
impresa que se proporciona con la Edición empresarial incluye el libro Características 
empresariales de Visual Studio más los CD de Microsoft Developer Network que contienen 
documentación completa en pantalla.  

 
Proyecto 
 
Definición de Proyecto en Visual Basic 
 
Para crear una aplicación con Visual Basic se trabaja con proyectos. Un proyecto es una 
colección de archivos que se usan para generar una aplicación.  
Al crear una aplicación probablemente creará nuevos formularios; también puede volver a 
usar o modificar formularios creados en proyectos anteriores. Esto también se aplica a otros 
módulos o archivos que pueda incluir en su proyecto. Los controles ActiveX y los objetos de 
otras aplicaciones también se pueden compartir entre proyectos. 
Después de ensamblar todos los componentes de un proyecto y escribir el código, puede 
compilar el proyecto para crear un archivo ejecutable. 
 
Componentes de un Proyecto 
 
Cuando desarrolla un aplicación, trabaja con un archivo de proyecto para administrar todos 
los diferentes archivos que crea. Un proyecto consta de lo siguiente: 

• Un archivo de proyecto que realiza el seguimiento de todos los componentes (.vbp) 
• Un archivo para cada formulario (.frm). 
• Un archivo de datos binario para cada formulario que contenga datos sobre propiedades 

de controles del formulario (.frx). Estos archivos no se pueden modificar y los genera 
automáticamente cualquier archivo .frm que tenga propiedades en formato binario, como 
Picture o Icon. 

• Opcionalmente, un archivo para cada módulo de clase (.cls). 
• Opcionalmente, un archivo para cada módulo estándar (.bas). 
• Opcionalmente, uno o más archivos con controles ActiveX (.ocx). 
• Opcionalmente, un único archivo de recursos (.res). 
  
El archivo de proyecto es simplemente una lista de todos los archivos y objetos asociados con 
el proyecto, así como información sobre las opciones de entorno establecidas. Esta 
información se actualiza cada vez que guarda el proyecto. Todos los archivos y objetos 
también se pueden compartir con otros proyectos. 
Cuando ha completado todos los archivos del proyecto puede convertir el proyecto en un 
archivo ejecutable (.exe): en el menú Archivo, elija el comando Generar proyecto.exe.  
 
Formularios 
 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 3 
 

Un formulario es una ventana. La ventana Windows de cualquier aplicación. 
Podemos abrir tantas ventanas como queramos en nuestro proyecto, pero el nombre de las 
ventanas debe ser distinto. Por defecto, la ventana que se abre en Visual Basic tiene el nombre 
de Form1.  
Los módulos de formularios (extensión de nombre de archivo .frm) pueden contener 
descripciones en forma de texto del formulario y sus controles, incluyendo los valores de sus 
propiedades. También pueden contener declaraciones a nivel de formulario de constantes, 
variables y procedimientos externos, procedimientos de evento y procedimientos generales. 
 
Módulos de clase 
 
Los módulos de clase (extensión de nombre de archivo .cls) son similares a los módulos de 
formulario, excepto en que no tiene interfaz de usuario visible. Puede usar módulos de clase 
para crear sus propios objetos, incluyendo código para  métodos y propiedades.  
 
Módulos estándar 
 
Un módulo es un archivo Visual Basic donde escribimos parte del código de nuestro programa, y 
digo parte, porque puede haber código en el formulario también.  
Las rutinas incluidas dentro de los módulos pueden ser ejecutadas desde los formularios de la 
aplicación.  
Los módulos estándar (extensión de nombre de archivo .bas) pueden contener declaraciones 
públicas o a nivel de módulo de tipos, constantes, variables, procedimientos externos y 
procedimientos públicos.  
 
Archivos de Recursos 
 
Los archivos de recursos (extensión de nombre de archivo .res) contienen mapas de bits, 
cadenas de texto y otros datos que puede modificar sin volver a modificar el código. Por 
ejemplo, si piensa traducir su aplicación a un idioma extranjero, puede guardar todas las 
cadenas de texto de la interfaz de usuario y los mapas de bits en un archivo de recursos, y 
simplemente traducir el archivo de recursos en vez de la aplicación completa. Un proyecto 
sólo puede contener un archivo de recursos. 
 
Controles Active X 
 
Los controles ActiveX (extensión de nombre de archivo .ocx) son controles opcionales que se 
pueden agregar al cuadro de herramientas y se pueden usar en formularios. Cuando instala 
Visual Basic, los archivos que contienen los controles incluidos en Visual Basic se copian a un 
directorio común (el subdirectorio \Windows\System). Existen controles ActiveX adicionales 
disponibles en diversas fuentes. También puede crear sus propios controles mediante las 
ediciones Profesional y Empresarial de Visual Basic. 
 
Controles estándar 
 
Los controles estándar los proporciona Visual Basic. Los controles estándar, como 
CommandButton  (botón de comando) o Frame (marco), siempre están incluidos en el cuadro de 
herramientas, al contrario de lo que ocurre con los controles ActiveX y los objetos insertables, 
que se pueden agregar y quitar del cuadro de herramientas. 
 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 4 
 

Programación orientada a objetos 
 
La programación orientada a objetos es una forma de programación que utiliza objetos, ligados 
entre mensajes, para la resolución de problemas. Puede considerarse como una extensión de la 
programación estructurada en un intento de potenciar los conceptos de modularidad y 
reutilización del código. 
 
Objetos  
 
Los programas tradicionales se componen de procedimientos y de datos. Un programa orientado 
a objetos se compone solamente de objetos. Un objeto es una encapsulación genérica de datos y 
de los procedimientos para manipularlos. Dicho de otra manera, un objeto es una entidad que 
tiene asociado un conjunto de atributos particulares: métodos, eventos y propiedades. Ejemplo: 
Una caja de texto (TextBox) es un objeto, el ancho, el alto, etc. son propiedades. Las rutinas 
que permiten maximizar ó minimizar la caja de texto son métodos. 
 
Propiedades  
 
Son las características ó atributos que posee un objeto (ventana de Windows). Ejemplo: Color de 
fondo del formulario, Fuente de texto de un TextBox, ....  
 
Métodos 
 
Los métodos son funciones internas de un determinado objeto que permite realizar funciones 
sobre él o sobre  otro objeto en respuesta a un determinado estímulo (evento - mensaje). 
Ejemplo: Deseamos poner en la ventana Windows de nuestra aplicación “Hola Mundo”, por lo 
tanto pondremos el método: Form1.Print "Hola mundo" 
 
Eventos 
 
Un evento es un estímulo que recibe un objeto, por el cual, hace que se desate un procedimiento 
asociado. Un programa Visual Basic es un POE (Programa orientado a eventos). 
Todo lo que hacemos en un programa Visual Basic está generado por medio de eventos. 
 
Clases 
 
Una clase es un tipo de  objeto definido por el usuario, es una generalización de un tipo 
específico de objeto. Por ejemplo la cubetera es la clase, los cubitos son los objetos. 
Para crear un objeto es necesario definir una variable que invoque a la clase del objeto a crear. 
Ejemplo:  
 

Dim caja As TextBox 
 

Características de la programación orientada a objetos  
 
Abstracción  
 
Por medio de la abstracción podremos observar un problema un en escenario en particular 
abstrayéndonos de las particularidades no esenciales. 
Ejemplo: Guardaremos un registro en disco sin interesarnos en que pista se almacenará. 
 
Encapsulamiento 
 
Nos permite tomar a los objetos como cajas negras, o sea como unidades elementales. 
 
Herencia 
 
Es la encargada de compartir automáticamente métodos y datos entre clases y subclases. No 
disponible en Visual Basic. 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 5 
 

 
Polimorfismo 
 
Permite utilizar un mismo método de diferentes formas, dependiendo de la clase sobre la cual se 
aplique. 
 
Explicación integrada y ejemplo de Objetos, Propiedades, Métodos y Eventos 
 
Los formularios y controles de Visual Basic son objetos que exponen sus propios métodos, 
propiedades y eventos. Las propiedades se pueden considerar como atributos de un objeto, los 
métodos como sus acciones y los eventos como sus respuestas. 
Un objeto de uso diario como el globo de un niño tiene también propiedades, métodos y 
eventos. Entre las propiedades de un globo se incluyen atributos visibles como el peso, el 
diámetro y el color. Otras propiedades describen su estado (inflado o desinflado) o atributos que 
no son visibles, como su edad. Por definición, todos los globos tienen estas propiedades; lo que 
varía de un globo a otros son los valores de estas propiedades. 
Un globo tiene también métodos o acciones inherentes que puede efectuar. Tiene un método 
inflar (la acción de llenarlo de helio) o un método desinflar (expeler su contenido) y un método 
elevarse (si se deja escapar). De nuevo, todos los globos pueden efectuar estos métodos. 
Los globos tienen además respuestas predefinidas a ciertos eventos externos. Por ejemplo, un 
globo respondería al evento de pincharlo desinflándose o al evento de soltarlo elevándose en el 
aire. 
Los objetos tienen propiedades, responden a eventos y ejecutan métodos: 
 

 
Si se pudiera programar un globo, el código de Visual Basic podría ser como el siguiente. Para 
establecer las propiedades del globo: 
 

Globo.Color = Rojo  
Globo.Diámetro = 10 
Globo.Inflado = True 

 
Observe la sintaxis del código: el objeto (Globo) seguido de la propiedad (Color) seguida de la 
asignación del valor (Rojo). Podría modificar el color del globo desde el código si repitiera esta 
instrucción y sustituyera el valor por otro diferente. Las propiedades también se pueden 
establecer en la ventana Propiedades mientras se está diseñando la aplicación. 
Los métodos de un globo se invocan de esta forma: 
 

Globo.Inflar 
Globo.Desinflar 
Globo.Elevar 5 

  
La sintaxis es similar a la sintaxis de las propiedades: el objeto (un nombre) seguido de un 
método (un verbo). En el tercer ejemplo hay un elemento adicional, llamado argumento, que 
indica la distancia que se eleva. Algunos métodos tendrán uno o más argumentos para describir 
más a fondo la acción que se va a ejecutar. 
El globo puede responder a un evento como se muestra a continuación: 
 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 6 
 

Sub Globo_Pinchazo() 
     Globo.Desinflar 

    Globo.HacerRuido "Bang" 
    Globo.Inflado = False  

     Globo.Diámetro = 1 
End Sub  

En este caso, el código describe el comportamiento del globo cuando se produce un evento 
Pinchazo: invoca el método Desinflar y luego invoca el método HacerRuido con un argumento 
“Bang” (el tipo de ruido que se va a hacer). Como el globo ya no está inflado, la propiedad 
Inflado tiene el valor False y la propiedad Diámetro adopta un nuevo valor. 
Si bien no puede programar un globo, sí puede programar un formula rio o un control de Visual 
Basic. Como programador, tiene el control: decide qué propiedades se deben modificar, qué 
métodos se deben invocar o a qué eventos hay que responder para conseguir la apariencia y el 
comportamiento deseados. 
 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 7 
 

Diferencias entre la programación procedural y la programación bajo Windows 
 
Un estudio profundo del funcionamiento interno de Windows necesitaría un libro completo. No es 
necesario tener un profundo conocimiento de todos los detalles técnicos. Una versión reducida 
del funcionamiento de Windows incluye tres conceptos clave: ventanas, eventos y mensajes. 
Una ventana es simplemente una región rectangular con sus propios límites. Probablemente ya 
sabe que hay varios tipos de ventanas: una ventana Explorador en Windows 98, una ventana de 
documento dentro de su programa de proceso de textos o un cuadro de diálogo que emerge 
para recordarle una cita. Aunque éstos son los ejemplos más comunes, realmente hay otros 
muchos tipos de ventanas. Un botón de comando es una ventana. Los iconos, cuadros de texto, 
botones de opción y barras de menús son todas ventanas.  
El sistema operativo Microsoft Windows administra todas estas ventanas asignando a cada una 
un único número identificador (controlador de ventana o hWnd). El sistema controla 
continuamente cada una de estas ventanas para ver si existen signos de actividad o eventos. 
Los eventos pueden producirse mediante acciones del usuario, como hacer clic con el mouse 
(ratón) o presionar una tecla, mediante programación o incluso como resultado de acciones de 
otras ventanas. 
Cada vez que se produce un evento se envía un mensaje al sistema operativo. El sistema 
procesa el mensaje y lo transmite a las demás ventanas. Entonces, cada ventana puede realizar 
la acción apropiada, basándose en sus propias instrucciones para tratar ese mensaje en 
particular (por ejemplo, volverse a dibujar cuando otra ventana la ha dejado al descubierto). 
Como puede imaginar, tratar todas las combinaciones posibles de ventanas, eventos y mensajes 
podría ser interminable. Afortunadamente, Visual Basic le evita tener que tratar con todos los 
controladores de mensajes de bajo nivel. Muchos de los mensajes los controla automáticamente 
Visual Basic, mientras que otros se tratan como procedimientos de evento para su comodidad. 
Esto le permite crear rápidamente eficaces aplicaciones sin tener que tratar detalles 
innecesarios. 
En las aplicaciones tradicionales o “por procedimientos”, la aplicación es la que controla qué 
partes de código y en qué secuencia se ejecutan. La ejecución comienza con la primera línea de 
código y continúa con una ruta predefinida a través de la aplicación, llamando a los 
procedimientos según se necesiten. 
En una aplicación controlada por eventos, el código no sigue una ruta predeterminada; ejecuta 
distintas secciones de código como respuesta a los eventos. Los eventos pueden desencadenarse 
por acciones del usuario, por mensajes del sistema o de otras aplicaciones, o incluso por la 
propia aplicación. La secuencia de estos eventos determina la secuencia en la que se ejecuta el 
código, por lo que la ruta a través del código de la aplicación es diferente cada vez que se 
ejecuta el programa. 
Puesto que no puede predecir la secuencia de los eventos, el código debe establecer ciertos 
supuestos acerca del “estado del mundo” cuando se ejecute. Cuando haga suposiciones (por 
ejemplo, que un campo de entrada debe contener un valor antes de ejecutar un procedimiento 
para procesar ese valor), debe estructurar la aplicación de forma que asegure que esa 
suposición siempre será válida (por ejemplo, deshabilitando el botón de comando que inicia el 
procedimiento hasta que el campo de entrada contenga un valor). 
El código también puede desencadenar eventos durante la ejecución. Por ejemplo, cambiar 
mediante programación el texto de un cuadro de texto hace que se produzca el evento Change 
del cuadro de texto. Esto causaría la ejecución del código (si lo hay) contenido en el evento 
Change. Si supone que este evento sólo se desencadenará mediante la interacción del usuario, 
podría ver resultados inesperados. Por esta razón es importante comprender el modelo 
controlado por eventos y tenerlo en cuenta cuando diseñe su aplicació n. 
Con el fin de observar las diferencias entre programación secuencial  (estilo DOS) y 
programación orientada a objetos (estilo Windows), vamos a construir una aplicación de ejemplo 
desde los dos estilos comentados. 
 
Programación secuencial 
 
Suponiendo que ya ha arrancado Visual Basic, haga doble clic sobre el formulario Form1 
visualizado por defecto y en la ventana que se presenta escriba e1 código que se muestra en la 
figura siguiente: 
 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 8 
 

 

Esta ventana presenta un procedimiento 
privado llamado Form_Load que contiene 
cuatro sentencias. La primera, 
Forml.Caption = "UAI", pone el título al 
formulario Forml, la segunda 
Forml.AutoRedraw = True, activa el 
redibujado automático del formulario, la 
tercera y la cuarta, Form1.Print “” y 
Forml.Print "Bienvenidos a Visual Basic", 
dibuja el mensaje especificado sobre el 
formulario. 
 

 
Para guardar la aplicación, ejecute la opción Guardar proyecto del menú Archivo y ponga 
nombre a los archivos cuando le sean solicitados. Por ejemplo, guarde el formulario con el 
nombre saludol.frm y el proyecto con el nombre saludo1. vbp. 
Para ver el resultado, ejecute la aplicación. Para ello, haga clic en el botón correspondiente de la 
barra de herramientas o ejecute la opción Iniciar del menú Ejecutar. El resultado puede verlo en 
la figura que se presenta a continuación: 
 

 

Observe que el resultado es una ventana Windows 
titulada UAI que visualiza el mensaje Bienvenidos a 
Visual Basic. 
Así mismo, observe que la ventana Windows tiene 
su menú de control a la izquierda (el icono de la 
aplicación); sus botones para minimizarla, 
maximizarla o cerrarla, a la derecha; y que se puede 
redimensionar, actuando sobre el marco.  
 

 
Para dotar a la ventana con esta funcionalidad, no hemos tenido que escribir nada de código; es 
un trabajo que Visual Basic ha hecho por nosotros. 
Para finalizar la aplicación, haga clic en el botón correspondiente de la barra de herramientas o 
ejecute la opción Terminar del menú Ejecutar. Otra forma de realizar la misma operación es 
hacer clic en botón, cerrar la ventana ( ). 
 
Programación orientada a objetos 
 
Como hemos dicho anteriormente, una aplicación en Windows presenta todas las opciones 
posibles en uno o más formularios (ventanas o cajas de diálogo), para que el usuario elija una 
de ellas. Esto da lugar a una nueva forma de pensar y de programar. Por ejemplo, vamos a 
realizar una aplicación Windows, saludo2, que visualice una ventana como la de la figura 
siguiente, de forma que cuando el usuario haga clic en el botón Mensaje, en la caja de texto 
aparezca el mensaje Bienvenidos a Visual Basic y cuando haga clic en Borrar desaparezca dicho 
mensaje. 
 

 
 
Suponiendo que ya tenemos arrancado Visual Basic, ¿cuál es el siguiente paso para desarrollar 
una aplicación Windows? En general, para construir una aplicación siga los pasos indicados a 
continuación: 



FFUUNNDDAAMMEENNTTOOSS  DDEE  IINNFFOORRMMÁÁTTIICCAA    DDeeppaa rrttaammee nnttoo  ddee   IInnggee nniiee rrííaa   EElléé ccttrriiccaa   
 
 

Visual Basic 9 
 

1. Cree una nueva aplicación (nuevo proyecto). 
2. Ajuste el tamaño por defecto del formulario.  
3. Dibuje los controles. 
4. Defina las propiedades del formulario y de los controles. 
5. Escriba el código para cada uno de los objetos. 
6. Guarde la aplicación. 
7. Verifique la aplicación. 
8. Cree un fichero ejecutable. 

 


