DESCRIPTIVE ANALYSIS OF THE POLLUTION BY NITROGEN OXIDES IN ROSARIO CITY

TOPICS: EN01

AUTHORS

Ing. Daniel Antonio Andrés. Universidad Tecnológica Nacional. Ing. Eduardo Joaquín Ferrero. Universidad Tecnológica Nacional. Ing. César Eliecer Mackler. Universidad Tecnológica Nacional. Lic. Teresita Terán Lomas. Universidad Nacional de Rosario.

ADDRESS

E. Zeballos 1341 2000 Rosario - Pcia. de Santa Fe REPUBLICA ARGENTINA

Pujato 1602 - Lomas de Alberdi 2000 Rosario - Pcia. de Santa Fe REPUBLICA ARGENTINA

ABSTRACT

The present work has as an object to show the levels reached by the pollution by Nitrogen Oxides (NOx), existing in the urban environment of Rosario City, Santa Fe Province, Argentina.

These values are obtained by means of the operation of Continuous Monitoring Net of the environment of the City, with measurement stations of chemical type and that seek to follow the features of the Global Environmental Monitoring Systems (G.E.M.S.), belonging to the United Nations Program (U.N.E.P.).

From the beginning of the year 1994, it was begun to investigate the degree of air pollution of the city in relationship to four primary pollutants. They were selected, by this purpose, Nitrogen Oxides (NOx), Sulphur Dioxide (SO2), Carbon Monoxide (CO) and Precipitable Solids. Along of almost two years of practice, it was selected the Nitrogen Oxides (NOx) as an object of this written work, because sulphur oxides (SO2 and SO3) -of great importance pollutant in other parts of the world such as Europe and North America- has no incidence in Rosario. This remained demostrated along a year and a half of continuous measurements in four sampling stations situated two in the centre of the city and two in suburban area. In one of the influence of the boundary industrial sector where there are companies devoted to Sulfuric Acid fabrication, refineries of oil, petrochemicals and cellulose industries. Rosario City has around of a million of inhabitants and it is located in the eastern

Table 1 - MONTHLY DESCRIPTIVE ANALYSIS - 1995	
Media, Standard Deviation, Variation Coefficient, Confidence Limits	
NOx (Micrograms/m3air)	

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	67	46	70	73		161	97	74	132	134	109	161
2	67	44	67	80	64	181	86	74	116	117	101	142
3	27	50	99	62	45	186	86	82	116	83	108	142
4	25	56	99	65	38	186	120	157	142	110	96	181
5	8	38	/0	53	96	81	107	258	86	201	96	196
6	16	43	55	64	96	/6	122	258	/9	186	83	153
/	16	43	46	44	61	205	156	358	110	117	2/1	267
8	23	30	46	44	60	354		158	89	11/	192	127
9	87	28	119	44	89	188	 104	161	85	1/8	18/	110
10	87	63	119	155	03	107	134	123	85	165	101	118
11	94 50	51	F0	100	104	107	13	204	109	142	108	203
12	30	49	10	/0 124	73	01	44	120	90 100	110	100	200
13	47	42	42	00	/ S 01	04 101	40	120	100	124	270	200
14	21	42	4Z 55	70 00	00	246	44	58	252	107	203	202
16	31	65	81	90	68	134	44	94	87	189	203	155
17	71	53	38	158	122	161	58	143	87	111	188	151
18	73	70	19	89	166	161	58	192	87	155	100	261
19	30	70	19	113	76	161	70	198	97	164	107	217
20	26	70		123	76	104	82	198	173	164	107	148
21	41	132		163	68	119	48	83	116	119	252	188
22		77		163	145	103	41	144	132	119	305	198
23	37	77	39	119	184	70	41		133	119		85
24	78	89	45	83	185	89	119	101	133		248	
25	79	89	45	109	165	89	90	80	84	138	160	93
26	79	95	14	152	112	80	130	52	134	113	160	131
27	74	95	48	134	183	124	94	52	97		160	141
28	40	59	62		183	118	124	131	114	173	278	177
29	40		100		167	111	72	148	114	173	169	200
30	61		77		128	112	72	119	134	173	187	114
31	61		73		144		92	145		211		114
Media	50	62	63	98	107	140	83	140	116	148	167	170
StdDev	25	23	29	38	46	60	32	68	34	33	65	50
Varian	600	525	859	1443	2080	3579	1035	4578	1149	1120	4194	2531
V. Coef	49	37	46	39	42	43	39	48	29	23	39	30
LowLim	41	54	52	84	91	118	71	116	104	136	143	152
HighLim	59	71	74	112	124	161	95	164	128	160	191	188
Ŭ												

zone of the wet extensive plain, by the bank of an important river (Paraná River). The city present a form of larger length in the North-South direction, accompanying the trench river. It suffers almost permanently the action of the winds that help in the elimination of many gaseous pollutants that continually are produced in this city, but however the concentrations of some of them in central areas of the city, overcome frequently the allowed values by the municipal Laws, and the ones that are advised by National and International legislations.

With the obtained data for the Nitrogen Oxides (NO and NO2), a descriptive study of the concentrations of the above mentioned pollutant, was done with statistics technical. With the results of this studies it is realized a pursuit of the reached values of the concentrations during the different months and seasons of the year.

TEXT

The data are listed in Table 1. It's possible to say with a 95% of confidence that the real value is situated between the confidence limits listed in last two rows of Table 1. These was represented in the Figure 1.

Figure 1. Confidence Intervals of Monthly Medias (NOx en Microgrs/m3 of Air)

These intervals will be followed analyzing in a cycle of ten years to determine the trends of the concentrations of NOx.

A quick overview can be seen in Table 2 where data was arranged in the percentile form.

Percent.	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
10	16	34.5	19	44	60	80	42.5	58	85	110.5	96	114
25	28.5	43	42	64.5	68	95.5	53	82.5	87	117	107.5	129
50	41	54	55	89.5	96	118	77.5	126	114	140	160	155
75	72	71	77	128.5	144.5	171	102	159.5	132.5	173	197.5	197
90	79	83.5	109.5	156.5	183	191	121	204	134	189	270.5	217

Table 2. Percentiles of NOx Values During 1995(Micrograms/m3 of Air)

INTERPRETATION: String 1, January

10% of the values of NOx is inferior or equal to 16 Micrograms / m3 of air.

CONCLUSION:

Analyzing the data obtained during the year 1995 (Table 1), it can deal a growing trend in the concentrations from NOx along the year. The motive of this trend, we suspect belongs to the increase in the frequency to convey in the zone of the commercial center of the city (place where it is located the sampling station), and in adition to an exceptional climatic condition in the second semester of the year, where prevailed conditions (rain absence and calm winds), being opposed to the characteristic normal conditions of this zone and that possesses good rain regime and strong winds in some months.

Currently we are in the task of contrasting pollution data with other parameters as are the meteorological variables, evolution of the vehicular flow, incidence of other sources.

We wait with the advance of these studies - bases on the task that effect the forefront countries -, to offer a tool to help the preservation of the environmental in our city, and offer usefulness data to other institutions that need it.