UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO

DEPARTAMENTO DE INGENIERIA QUIMICA

CATEDRA DE INTEGRACION II

SERIE DE PROBLEMA: ESTEQUIOMETRIA

Problema Nº 1: Se desea comerciar oxigeno en pequeños cilindros que tengan un volumen de 0,5 pies cúbicos y que cada uno contenga 1,0 lb de oxígeno. Si los cilindros pueden estar sometidos como máximo a una temperatura de 120° C, calcular la presión para la que deben estar proyectados, supuesta la aplicación de la ley de los gases perfectos.

Problema Nº 2: Calcular el número de pies cúbicos de sulfuro de hidrógeno, medidos a la temperatura de 50° C y presión de 29,5 pulgadas de Hg., que pueden producirse de 7 lb de sulfuro de hierro (SFe).

Problema Nº 3: El gas acetileno se obtiene tratando el carburo de calcio con agua, según la siguiente reacción:

$$C_2Ca + 2H_2O \Rightarrow C_2H_2 + Ca(OH)_2$$

Calcúlese el número de horas de servicio que se pueden conseguir con una libra de carburo en una lámpara de acetileno que quema 2 pies cúbicos de gas por hora a una temperatura de 75° F y presión de 743 mm de Hg.

Problema N° 4: Un gas natural tiene la siguiente composición en volumen: CH_4 : 94,1 %; C_2H_6 : 3,0 %; N_2 : 2,9 %. Este gas se conduce desde el pozo a una temperatura de 80° F y presión absoluta de 50 p.s.i.. Puede suponerse que se puede considerar como un gas ideal. Calcular:

- La presión parcial del nitrógeno.-
- El volumen de componente puro del nitrógeno por 100 pies cúbicos de gas.-
- La densidad de la mezcla en libras por pie cubico a las condiciones que se encuentra.-

Problema Nº 5: Por electrólisis de una disolución de salmuera se obtienen en el cátodo una mezcla de gases que tienen la siguiente composición en peso: Cl₂: 67 %; Br₂: 28 %; O₂: 5 %. Utilizando la ecuación de los gases ideales, calcular:

- la composición del gas en volumen.-
- La densidad de la mezcla en gramos por litro a 25^o C y 740 mm de Hg. de presión.-
- El peso específico relativo de la mezcla.-

Problema Nº 6: Una mezcla de amoniaco y aire a la presión de 730 mm. de Hg. y temperatura de 30° C contiene 30 % de NH₃ en volumen. El gas pasa con un caudal volumétrico de 100 pies cúbicos por minuto a través de una torre de absorción en la que se extrae el NH₃. Los gases salen de la torre a una presión de 725 mm de Hg, una temperatura de 20° C y contiene 0,05 % de NH₃ en volumen. Utilizando la ecuación de los gases ideales, calcular:

- El caudal volumétrico del gas que sale de la torre en pies cúbicos por minuto.-
- El peso del NH3 absorbido en la torre por minuto.-

Problema Nº 7: Un volumen de 1000 pies cúbicos de aire húmedo a una presión absoluta de 740 mm. de Hg y temperatura de 300° C contiene vapor de agua en tales proporciones que su presión parcial es de 22,0 mm de Hg. Sin cambiar la presión total, la temperatura se reduce a 150° C y parte del vapor de agua se separa por condensación. Después de enfriarlo se encuentra que la presión del vapor de agua es de 12,7 mm. de Hg. Calcular:

- El volumen de gas después del enfriamiento.-
- El peso del agua condensada.-

Problema Nº 8: El gas procedente de un horno de azufre tiene la siguiente composición en volumen: SO₃: 0,8 %; SO₂: 7,8 %; O₂: 12,2%; N₂: 79,2 %. Calcular:

- El volumen del gas a 600° F.-
- El porcentaje en exceso de oxigeno que se ha suministrado para la combustión anterior, del necesario para la oxidación completa a SO₃.-
- El volumen de aire suministrado a 100° F y 29,2 pulgadas de Hg. para la combustión, por libra de azufre guemado.-

Problema Nº 9: El análisis de un gas de desperdicio de cierto proceso tiene la siguiente composición: CO₂: 50 %; C₂H₄: 10 %; H₂: 40 %. Cual es el peso molecular promedio del gas y su composición en peso.

Problema Nº 10: Calcular la composición molar de cada componente de una mezcla que tiene la siguiente composición en peso: CO₃Ca: 22 %; CO₃Mg: 18 %; CaO: 23 %; CINa: 30 %; SO₄K₂: 7 %.

Problema Nº 11: Si 10 kg de SPb y 3 kg de oxigeno reaccionan para dar lugar a la formación de 1 kg de PbO₂ y 6 kg de Pbº y si únicamente se forma SO₂ como producto adicional, calcular:

- La cantidad de SPb que no reacciona.-
- La cantidad de SO₂ formado.-
- El porcentaje de conversión de SPb a Pbº.-

Problema Nº 12: El ácido sulfúrico se obtiene de acuerdo a la siguiente reacción:

$$2 S + 3 O_2 + 2 H_2 O \Rightarrow 2 SO_4 H_2$$

Calcular:

- Si el azufre comercial tiene un 97 % de pureza: que cantidad de ácido se obtiene a partir de 1 Tn de azufre?.-
- Cuantas toneladas de piritas con un 96 % de S₂Fe se requieren para obtener 1 Tn de SO₄H₂.-

Problema Nº 13: La reacción global para la producción de fósforo elemental a partir de fosfato en un horno eléctrico puede escribirse de la siguiente forma:

$$2 (PO4)_2Ca_3 + 10 C + 6 SiO_2 \Rightarrow P_4 + 6 SiO_3Ca + 10 CO$$

Calcular:

- 1) La cantidad de carbono y sílice que es preciso cargar con 1 Tn de fosfato, si ha de haber un exceso de 25 % de C y un 40 % de sílice.-
- 2) El peso que se obtendrá en 1) si la conversión es del 93 %.-
- 3) Kilogramos de escoria que se obtienen en 2).-